3 research outputs found

    Quantum walks as a probe of structural anomalies in graphs

    Full text link
    We study how quantum walks can be used to find structural anomalies in graphs via several examples. Two of our examples are based on star graphs, graphs with a single central vertex to which the other vertices, which we call external vertices, are connected by edges. In the basic star graph, these are the only edges. If we now connect a subset of the external vertices to form a complete subgraph, a quantum walk can be used to find these vertices with a quantum speedup. Thus, under some circumstances, a quantum walk can be used to locate where the connectivity of a network changes. We also look at the case of two stars connected at one of their external vertices. A quantum walk can find the vertex shared by both graphs, again with a quantum speedup. This provides an example of using a quantum walk in order to find where two networks are connected. Finally, we use a quantum walk on a complete bipartite graph to find an extra edge that destroys the bipartite nature of the graph.Comment: 10 pages, 2 figure

    Realization of the Optimal Universal Quantum Entangler

    Full text link
    We present the first experimental demonstration of the ''optimal'' and ''universal'' quantum entangling process involving qubits encoded in the polarization of single photons. The structure of the ''quantum entangling machine'' consists of the quantum injected optical parametric amplifier by which the contextual realization of the 1->2 universal quantum cloning and of the universal NOT (U-NOT) gate has also been achieved.Comment: 10 pages, 3 figures, to appear in Physical Review

    Quantum Information with Atoms, Ions and Photons

    No full text
    corecore